Journal of the European Ceramic Society 20 (2000) 789-794

High aspect ratio β -Si₃N₄ grain growth

D.S. Perera*, D.R.G. Mitchell, S. Leung

Materials Division, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234, Australia

Received 23 March 1999; received in revised form 23 July 1999; accepted 8 August 1999

Abstract

It has been shown by others that high aspect ratio β -Si₃N₄ grains formed in-situ on sintering lead to high fracture toughness in $Si₃N₄$ ceramics. In this work α -Si₃N₄ powder was sintered at 1750°C for varying times with Y₂O₃, La₂O₃, SiO₂, and CaO additives. The microstructure of the materials was examined by electron microscopy and microanalysis. The β -Si₃N₄ grain growth rate was controlled by diffusion through the liquid phase. A maximum aspect ratio of about 20 was observed for β -Si₃N₄ grains heated for 6 h and was dependent on the chemistry of the liquid phase present. The formation of high aspect ratio $Si₃N₄$ at a relatively low temperature and short sintering times is discussed. \oslash 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Aspect ratio; Grain growth; Microstructure-final; $Si₃N₄$

1. Introduction

Lange¹ showed that the fracture toughness of polycrystalline β -Si₃N₄ increased with grain length. Elongated grains up to 300 µm in length have been produced by gas pressure sintering at 2000° C for 8 h.² Both these works essentially referred to aspect ratio although they did not specifically state it. The increased aspect ratio of β -Si₃N₄ resulted in increased fracture toughness and a high Weibull modulus. A self-reinforced fibrous microstructure is preferable to one produced by adding, for example, SiC whiskers to increase toughness, because of the inherent hazards in handling whiskers and the high processing costs.³ In previous work,⁴ elongated β -Si₃N₄ grains were obtained in a SiC-containing composite which had additions of Y_2O_3 , La₂O₃, and SiO₂, by heating to 1750° C, without any dwell at temperature. This same system has been investigated extensively, $5-8$ and further work has been carried out here to study the formation of elongated grains in this system. The addition of CaO to $Y_2O_3-MgO-Si_3N_4$ system has been shown to produce β -Si₃N₄ grains with an aspect ratio of about 5.9 Therefore, in the present work additions of CaO to the Y_2O_3 -La₂O₃-Si₃N₄ system (free of SiC) were investigated to assess its influence on β -Si₃N₄ aspect ratio. Most of the literature work described above was performed at high temperatures $(>1800^{\circ}C)$ either by gas pressure sintering or hot pressing, and in some cases by heat treating (up to 66 h).¹⁰ In the present work pressureless sintering was carried out at 1750° C with dwell times of up to 12 h.

2. Experimental

The compositions investigated are listed in Table 1. Composition C1 has been extensively investigated previously.4±8 All starting powders were mixed in iso-propanol in an alumina mortar and pestle for 15 min, dried at 110° C for 4 h and uniaxially pressed into cylindrical pellets of size ≈ 20 mm diameter $\times 10$ mm, followed by cold isostatic pressing at 200 MPa. The pellets were embedded in an equal volume of a $BN/Si₃N₄$ powder mixture placed in a graphite crucible. The crucible was placed in a graphite furnace and sintered in a flowing nitrogen atmosphere. The maximum sintering temperature was 1750° C with a range of dwell times used. The heating and cooling rates were 5° C/min.

Scanning electron microscopic (SEM) examination was performed using a JEOL 6300 SEM on polished and fracture surfaces. Ion-milled thin sections were examined using a JEOL 2000FXI scanning transmission electron

^{*} Corresponding author. Tel.: $+61-2-9717-3677$: fax: $+61-2-9543-$ 7179.

E-mail address: dsp@ansto.gov.au (D.S. Perera).

microscope (TEM). Quantitative energy dispersive X-ray spectrometry (EDS) was performed using both TEM and SEM. The sintered pellets were crushed for powder X-ray diffraction (XRD) analysis using a Siemens D500 diffractometer with C_0K_γ radiation.

The intercept method¹¹ method used to calculate mean grain size was unsuitable because most of the β - $Si₃N₄$ grains were acicular. The grain measurement method used was that of Hwang and Tien.¹⁶ The random orientation of the prismatic grains meant that the grain dimensions could be determined by measuring the maximum lengths and widths of appropriately oriented grains in the sectioned plane. The prismatic nature of the β -Si₃N₄ grains permitted those grains which lay parallel to the plane of the polished section to be readily identified by their rectangular shape, and by a corresponding absence of facets on the long axis of the grain. The lengths and breadths of $50-100$ β -Si₃N₄ grains from several SEM micrographs were measured and averaged. Also, in selected specimens the maximum aspect ratio was calculated for clearly visible grains.

Table 1 Compositions investigated $(wt\%)^a$

					Composition Si_3N_4 La ₂ O ₃ Y ₂ O ₃ CaO (SiO ₂) Total additives
C ₁	58.4	15		(3)	27
E1	75	15			25
E2	89	6.25	3.75		11
E ₃	51	30	18		49
E4	90				10
E ₅	80	10			20

^a For composition C1, $SiO₂$ was added instead of CaO; it also contained 14.6 wt% SiC. All materials ex-China Building Materials Academy, Beijing, China (typically $> 99\%$ purity). For others: Si₃N₄, LC12SX [impurities (C, Fe, Si) < 0.35%], H.C. Starck, Berlin, Germany; La₂O₃ (99.9% purity), Sigma Chemical Co. Inc., USA; Y_2O_3 (99.99% purity); and CaO added as CaCO₃, Aldrich Chemicals Inc., USA.

3. Results and discussion

3.1. Microstructure

All the sintered materials are denoted by M as a prefix to the composition. The influence of sintering dwell time on MC1 is shown in Fig. 1, where average grain lengths were ≈ 0.5 µm after a 0.1 h dwell [Fig. 1(a)] but 4–5 µm after a 12 h dwell [Fig. 1(b)]. This is in marked contrast to ME4 which showed elongated β -Si₃N₄ grains of length 3 -5μ m after no dwell [Fig. 2(a)] at 1750°C and 10 -30 µm after a 6 h dwell [Fig. 2(b)]. The grain growth in MC1 is limited probably due to the presence of SiC causing steric hindrance (see below). This effect has also been shown previously,¹² where 20 vol.% of sub-micron SiC additions to Si_3N_4 retarded $\beta-Si_3N_4$ growth. SiC will remain inert under the sintering conditions used here.

The elongated grain growth of β -Si₃N₄ is expected to increase fracture toughness. A fracture toughness value of 7.1 MPa $m^{0.5}$ was obtained for material of an identical composition to C1.⁷ This material was hot isostatically pressed (HIPed) and had a density of 99.7% that of theoretical. The materials which were pressureless sintered here were too porous $(10-20\%$ porosity) to enable the fracture toughness to be determined. Subsequent unpublished work by the present authors has shown that this porosity can be eliminated by glass encapsulating the materials, followed by HIPing.

EDS point analysis of the glassy regions near equiaxed grains in ME1 (Fig. 3) showed high $SiO₂$ contents (Table 2). Similar analyses near elongated grains in ME5 (Fig. 4) which had much higher CaO levels than ME1 showed high CaO contents (Table 2). The composition C1 has been shown to first form a liquid phase at 1390 \degree C.⁶ For the series of compositions E1–5 which contain CaO additions a lower temperature for liquid

Fig. 1. SEM micrographs of polished sections of MC1 sintered at 1750° C using (a) 0.1 h and (b) 12 h dwell times.

Fig. 2. SEM micrographs of fracture sections of ME4 sintered at 1750°C using (a) 0 h (brought to temperature and then cooled immediately) and (b) 6 h dwell times.

Fig. 3. TEM micrograph of ME1 showing an equiaxed β -Si₃N₄ grain in a $SiO₂$ -rich glassy phase. Numbers indicate positions of point analysis detailed in Table 2.

phase formation would be expected compared to C1. It has been shown that CaO additions lower the viscosity of oxynitride glass.¹³ The viscosity of a liquid (including melted glasses) decreases with increasing temperature. Therefore, the CaO-containing materials (E1-5) which gives rise to a liquid at a lower temperature (than C1; no CaO) would be expected to have a lower viscosity than that in C1 at the sintering temperature of 1750° C. Since a lower viscosity favours crystal growth 14 the results found here suggest that liquid phase viscosity is reduced by CaO additions, hence facilitating grain growth [compare Figs. $1(a)$ and $2(b)$].

3.2. Grain growth kinetics

The classical equation for grain growth during the latter stages of sintering is given as:¹⁵

Table 2 EDS analysis (at%) of the glassy regions shown in Figs. 3 and 4

Materials	Si	La	Y	Ca
ME1/Regions ^a				
1	78	12		3
2	61	19	17	3
3	57	21	18	$\overline{4}$
ME5				
Range	$53 - 66$	$7 - 10$	$9 - 14$	$17 - 24$
Mean	57	9	13	21

^a As marked in Fig. 3.

Fig. 4. TEM micrograph of ME5 showing elongated β -Si₃N₄ grains in a CaO-rich glassy phase.

$$
G^n - G_0^n = Kt \tag{1}
$$

where G is the grain diameter at time t and G_0 is the grain diameter at $t=0$. The exponent n is dependent on the mechanism of grain growth and has a value of 3 when the grain growth rate is controlled by diffusion through a liquid phase.

 $K=\exp(-Q/kT)$, where Q is the activation energy for grain growth, T is the absolute temperature and k is Boltzmann's constant. For the current work where the grains are elongated it is more meaningful to obtain an expression for area than diameter.

Eq. (1) can be modified to $A^m - A_0^m = Ct$, where $A =$ length \times breadth, $m = n/2$ and $C = (\pi/4)^{0.5}$ K. A plot of $A^{1.5} - A_0^{1.5}$ (i.e. $n = 3$) against t should yield a straight line passing through the origin. The mean length and breadth of β -Si₃N₄ grains are listed in Table 3 for materials MC1 [Fig. 1(a) and (b)] and ME4 [Fig. $2(a)$ and (b)]. The plots from these data (mean grain area parameter) are shown in Fig. 5, where a linear relationship with a correlation coefficient of >0.99 was obtained. Thus grain growth rate is controlled by diffusion through a liquid phase, as observed by many workers for β -Si₃N₄ systems (e.g. Hwang and Tien¹⁶). The liquid phase, which was evenly distributed, remains

Table 3 Mean length and breadth of β -Si₃N₄

Length \times	Area (A)	$A^{1.5} - A_0^{1.5}$	Time
$breadth$ (μ m)	$(\mu m)^2$	$(\mu m)^{3/2}$	(h)
Materials from composition C1			
0.35×0.3	0.1	θ	0
0.4×0.3	0.1	θ	0.1
1.2×0.4	0.5	0.3	1
2.0×0.5	1.0	1.0	3
2.7×0.6	1.6	2.0	6
4.7×0.5	2.4	3.6	12
Materials from composition E4			
4.8×0.7	3.4	Ω	
9.2×0.8	7.4	14.0	2
10.2×1.0	10.2	26.4	$\overline{5}$
10.5×1.3	13.6	44.2	6

Fig. 5. The mean grain area parameter (see text) of β -Si₃N₄ as a function of sintering time.

as glass in these materials, for example as seen in Fig. 1(a). An increase in aspect ratio of β -Si₃N₄ is seen for both C1 and E4 (Table 3) with increasing sintering time as observed by others for β -Si₃N₄^{17,18} and β SiAlON.¹⁶ In fact, Lai and Tien 18 showed a difference in the grain growth exponent against time for length $(n=3)$ and breadth ($n=5$) for $Si₃N₄$ sintered with 10 wt % $Y_3A_1S_2$. However, the material in that work was more likely to be a β -SiAlON than the β -Si₃N₄ in the present work, because some $A1_2O_3$ would have been incorporated in the β -Si₃N₄ structure. They also ignored the grain size at t (time) = 0 in their plots. In the present work grain growth kinetics of both length and breadth vielded exponents closer to $n=3$.

 α -Si₃N₄ grains are equiaxed and on heating they transform at $\sim 1400^{\circ}$ C to β -Si₃N₄ through a solutionprecipitation process in the presence of a liquid phase.¹⁶ Most commercial α -Si₃N₄ contains \sim 5% β -Si₃N₄ which acts as a nucleating agent for subsequent β -Si₃N₄ grain growth. The viscosity of the liquid plays a prominent role, both in the solution rate of α -Si₃N₄ and in the diffusion of Si and N to pre-existing β -Si₃N₄ nuclei.¹⁹ In ME4, the viscosity is expected to be lower than that of MC1 because of the presence of CaO (as discussed above). This factor clearly dominates the grain growth kinetics (Fig. 5), whereas the overall level of additives, and therefore the total volume of the liquid phase $(Table 1)$, appears to exert no significant influence. Park et al.²⁰ have shown that even a limited amount of liquid phase could give rise to elongated grains $(\sim 200 \text{ nm})$ provided it had a low viscosity and good wettability. If there is sufficient liquid phase to form a continuous membrane throughout sintering, then the volume fraction of liquid phase would not be expected to affect grain growth kinetics.²¹ However, where there is insuf ficient liquid phase to form a continuous membrane, the liquid phase volume fraction would then be expected to influence kinetics.

3.3. Aspect ratio

The maximum aspect ratio (length/breadth) was calculated for the E series of compositions and these ratios are listed in Table 4. Comparison of the maximum aspect ratios for ME4 (Table 4) showed that a 100%

Table 4 Maximum aspect ratio of β -Si₃N₄ grains

Material	Maximum aspect ratios	Dwell time (h)	Total additions $(\%)$	CaO (%)
ME4	10	2	10	2
ME4	20	6	10	\overline{c}
ME2		2	11	
ME3		2	49	

increase in aspect ratio resulted from increasing the dwell time from 2 to 6 h on sintering at 1750° C. A doubling of the CaO content (similar dwell and total additives) increased the maximum aspect ratio by 43% (compare ME2 and ME4/2 h dwell, Table 4). Pyzik and Beaman³ observed an increase in aspect ratio when as little as 0.5 wt% of CaO was added to a $Si_3N_4/Y_2O_3/$ MgO mixture. In the present work high levels of La and Y additives did not make much of a difference to the maximum aspect ratio for a given amount of CaO (compare ME2 and ME3, Table 4). Consideration of liquid phase formation in the $Si_3N_4-Y_2O_3-SiO_2^{22}$ and Si_3N_4 $La_2O_3-SiO_2^{23}$ systems would suggest that high levels of additives would favour the formation of large amounts of liquid phase. However, large amounts of liquid phase can prevent the growth of large grains because subsequent grain nucleation is homogeneous,²⁰ thereby preventing growth of a smaller number of large grains. It was observed by XRD analysis that there were at least four other phases present in these sintered materials, viz. LaSi₃N₅, (La,Y)₂O₃.Si₃N₄, (Y, La)₁₀(SiO₄)₆N₂ and La₂ O_3 ·Y₂O₃·3.3Si₃N₄, which can also impede grain growth due to steric hindrance.¹⁷

4. Conclusions

Powders containing α -Si₃N₄ and various additives were sintered at 1750° C for a range of times to study the development of β -Si₃N₄. Si₃N₄ sintered with Y₂O₃, La₂O₃ and CaO produced a ceramic containing β -Si₃N₄ grains with the highest aspect ratio (20). However, CaO levels were found to be the key factor influencing β - $Si₃N₄$ grain growth, with additions of up to 49% by weight Y_2O_3 , La₂O₃ and SiO₂ exerting little effect.

Kinetic measurements showed that the growth rate of β -Si₃N₄ was consistent with being controlled by diffusion through the liquid phase. It is believed that the significant effect of CaO on the kinetics stems from the reduction in the viscosity of the liquid phase at the sintering temperature.

Comparison with literature data suggest that CaO additions used in the present work permit the production of quite high aspect ratio (up to 20) β -Si₃N₄ at lower temperatures (1750 $^{\circ}$ C) and shorter dwell times (6 h) than has been achieved previously.

Acknowledgements

The authors thank E.R. Roach and D.J. Attard for sample preparation for electron microscopy.

References

- 1. Lange, F. F., Relation between strength, fracture energy, and microstructure of hot-pressed Si₃N₄. J. Am. Ceram. Soc., 1973, 56, 518±522.
- 2. Hirosaki, N., Akimune, Y. and Mitomo, M., Effect of grain growth of b-silicon nitride on strength, Weibull modulus and fracture toughness. J. Am. Ceram. Soc., 1993, 76, 1892-1894.
- 3. Pyzic, A. and Beaman, D. R., Microstructure and properties of self-reinforced silicon nitride. J. Am. Ceram. Soc., 1993, 76, 2737-2744.
- 4. Perera, D. S., Tokita, M. and Moricca, S., Comparative study of fabrication of $Si₃N₄/SiC$ composites by spark plasma sintering and hot isostatic pressing. J. Eur. Ceram. Soc., 1998, 18, 401-404.
- 5. Perera, D. S., Moricca, S., Drennan, J., Fan, Q. S. and Gu, P. Z., Mechanical Property/microstructure relationships in a range of Si3N4/SiC composites. In Proceedings of 5th International Symposium on Ceramic Materials and Components for Engines, ed. D. S. Yan, X. R. Fu and S. X. Shi. World Scientific Pub. Co. Ltd., Singapore, 1995, pp. 298-303.
- 6. Perera, D. S., Drennan, J., Moricca, S., Fan, Q. S., He, Y., Ding, W., Stewart, M. W. A. and Gu, P. Z., Microstructural correlation to sinter/HIP parameters of multiphase SiC reinforced $Si₃N₄$ ceramics. In Proceedings of Sixth International Symposium on the Science and Technology of Sintering, Sintering'95, ed. Li Nan. International Academic Publishers, Beijing, 1995, pp. 337-341.
- 7. Perera, D. S., Moricca, S., Drennan, J., Fan, Q. S. and Gu, P. Z., Optimization of sinter/HIP parameters of multiphase silicon nitride/silicon carbide ceramics. In Proceedings of the International Conference on Hot Isostatic Pressing, ed. F. H. Froes, J. Hebeisen and Widmer R. ASM International, Materials Park, 1996, pp. $121-126$.
- 8. Perera, D. S., Liddell, K., Moricca, S., Drennan, J., Ding, W. and Fan, Q. S., Phase relationships in the $Si₃N₄-SiC-La₂O₃-Y₂O₃$ $SiO₂$ system under high pressure gas processing. In Mass and Charge Transport in Ceramics. Ceram. Trans., Vol. 71, ed. K. Koumoto, L. M. Sheppard and H. Matsubara. Am. Ceram. Soc., Westerville, 1996, pp. 539-552.
- 9. Pyzic, A., Schwarz, D. B., Rossow, H. E., Beaman, D. R., Pyzic, B. M. and Dubensky, W. J. Method of preparing a self-reinforced silicon nitride ceramic of high fracture toughness. US Patent 5,012,1372, 1991.
- 10. Hirao, K., Watari, K., Britto, M. E., Toriyama, M. and Kanzaki, S., High thermal conductivity in silicon nitride with anisotropic microstructure. J. Am. Ceram. Soc., 1992, 79, 2485-2488.
- 11. Mendelson, M. I., Average grain size in polycrystalline ceramics. J. Am. Ceram. Soc., 1962, 52, 443-446.
- 12. Sasaki, G., Nakase, H., Sugunuma, K., Fujita, T. and Niihara, K., Mechanical properties and microstructure of $Si₃N₄$ matrix composites with nano-meter scale SiC particles. J. Ceram. Soc. Jpn., 1992, 100, 536-540.
- 13. Hampshire, S., Drew, R. A. L. and Jack, K. H., Oxynitride glasses. Phys. and Chem. of Glasses, 1985, 26, 182-186.
- 14. Brice, J. C., The Growth of Crystals from the Melt. North-Holland Publishing Co, Amsterdam, 1965 135-137.
- 15. Lay, K. W., Grain growth during sintering. In Proceedings of the Third International Conference on Sintering and Related Phenomena. Materials Science Research, Vol. 6, ed. G. C. Kuczynski. Plenum Press, New York, 1973, pp. 65-80.
- 16. Hwang, C. J. and Tien, T. Y., Microstructural development in silicon nitride ceramics. Mater. Sci. Forum, 1989, 47, 84-109.
- 17. Petzow, G. and Hoffmann, M. J., Grain growth studies in Si_3N_4 ceramics. Mater. Sci. Forum, 1993, 113-115, 91-102.
- 18. Lai, K. R. and Tien, T. S., Kinetics of β Si₃N₄ grain growth in $Si₃N₄$ ceramics sintered under high nitrogen pressure. J. Am. Ceram. Soc., 1993, 76, 91-96.
- 19. Vincenzini, P. and Babini, G. N., The influence of secondary phases on densification, microstructure and properties of hotpressed silicon nitride. In Sintered Metaleramic Composites, ed. G. S. Upadhyaya. Elsevier Science publishers B.V, Amsterdam, 1984, pp. 425-454.
- 20. Park, D. S., Lee, S. Y., Kim, H. D., Yoo, B. J. and Kim, B. A., Extra large grains in the silicon nitride ceramics doped with yttria and hafnia. J. Am. Ceram. Soc., 1998, 81, 1876-1880.
- 21. Ziegler, G., Heinrich, J. and Wotting, G., Relationships between processing, microstructure and properties of dense and reactionbonded silicon nitride. J. Mat. Sci., 1987, 22, 3041-3086.
- 22. Lange, F. F., Singhal, S. C. and Kuznicki, Phase relations and stability studies in the $Si_3N_4-SiO_2-Y_2O_3$ pseudoternary system. J. Am. Ceram. Soc., 1977, 60, 249-252.
- 23. Hirosaki, N., Okada, A. and Matoba, K., Sintering of Si_3N_4 with the addition of rare-earth oxides. J. Am. Ceram. Soc., 1988, 71, C144.